Regularized CNN Feature Hierarchy for Hyperspectral Image Classification
نویسندگان
چکیده
Convolutional Neural Networks (CNN) have been rigorously studied for Hyperspectral Image Classification (HSIC) and are known to be effective in exploiting joint spatial-spectral information with the expense of lower generalization performance learning speed due hard labels non-uniform distribution over labels. Therefore, this paper proposed an idea enhance CNN HSIC using soft that a weighted average uniform ground The method helps prevent from becoming over-confident. We empirically show that, improving performance, regularization also improves model calibration, which significantly beam-search. Several publicly available datasets used validate experimental evaluation, reveals improved as compared state-of-the-art models overall 99.29%, 99.97%, 100.0% accuracy Indiana Pines, Pavia University, Salinas dataset, respectively.
منابع مشابه
Cross-domain CNN for Hyperspectral Image Classification
In this paper, we address the dataset scarcity issue with the hyperspectral image classification. As only a few thousands of pixels are available for training, it is difficult to effectively learn high-capacity Convolutional Neural Networks (CNNs). To cope with this problem, we propose a novel cross-domain CNN containing the shared parameters which can co-learn across multiple hyperspectral dat...
متن کاملRegularized RBF Networks for Hyperspectral Data Classification
In this communication, we analyze several regularized types of Radial Basis Function (RBF) Networks for crop classification using hyperspectral images. We compare the regularized RBF neural network with Support Vector Machines (SVM) using the RBF kernel, and AdaBoost Regularized (ABR) algorithm using RBF bases, in terms of accuracy and robustness. Several scenarios of increasing input space dim...
متن کاملSemi-supervised feature learning for hyperspectral image classification
Hyperspectral image has high-dimensional Spectral–spatial features, those features with some noisy and redundant information. Since redundant features can have significant adverse effect on learning performance. So efficient and robust feature selection methods are make the best of labeled and unlabeled points to extract meaningful features and eliminate noisy ones. On the other hand, obtaining...
متن کاملMulti-view feature extraction for hyperspectral image classification
We study the multi-view feature extraction (MV-FE) framework for the classification of hyperspectral images acquired from airborne and spaceborne sensors. This type of data is naturally composed by distinct blocks of spectral channels, forming the hypercube. To reduce the dimensionality of the data by taking advantage of this particular structure, an unsupervised multi-view feature extraction m...
متن کاملNonparametric Fuzzy Feature Extraction for Hyperspectral Image Classification
Feature extraction plays an essential role in high-dimensional data classification. Linear discriminant analysis (LDA) is one of the most well-known methods for reducing data dimensionality in various fields. However, there are three inherent limitations when applying LDA to extract features. First, the number of features that can be extracted by LDA is the number of classes minus one at most. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2021
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs13122275